Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-30 10:01:45 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f78e47635f0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-30 10:01:45 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-30 10:01:45 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-30 10:01:45 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
16 jes1VKMFVeAD0000 None True Lugaro Cells Cold-sensitive sensory neurons in... None None notebook None None None None None 2024-10-30 10:01:58.259100+00:00 1
21 QGYsgM1ad0dk0000 None True Intestine IgG IgD Bulbourethral glands. None None notebook None None None None None 2024-10-30 10:01:58.259572+00:00 1
34 83UqqOBKMCfO0000 None True Igg2 intestine investigate visualize IgM IgD IgE. None None notebook None None None None None 2024-10-30 10:01:58.260797+00:00 1
49 5Rg0kBVXs5Jq0000 None True Igg3 study IgY study classify intestine invest... None None notebook None None None None None 2024-10-30 10:01:58.262229+00:00 1
56 H9AVNqTsy3nE0000 None True Cold-Sensitive Sensory Neurons Spinal nerves i... None None notebook None None None None None 2024-10-30 10:01:58.262889+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
4 UwC0QVurx8VG0000 None True Igg3 Oogonium IgG3 research. None None notebook None None None None None 2024-10-30 10:01:58.257964+00:00 1
5 I2s9yjbSruef0000 None True Igg2 Teeth Hensen's cells IgG3 research Granul... None None notebook None None None None None 2024-10-30 10:01:58.258059+00:00 1
14 jPwddx0itEIL0000 None True Cold-Sensitive Sensory Neurons Zona reticulari... None None notebook None None None None None 2024-10-30 10:01:58.258911+00:00 1
20 YO0QIlfNjaYl0000 None True Igd rank Medullary IgG3 research. None None notebook None None None None None 2024-10-30 10:01:58.259478+00:00 1
33 qRUnsBpuvyLV0000 None True Medullary IgG2 Teeth research IgE Spermatid IgG. None None notebook None None None None None 2024-10-30 10:01:58.260703+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
4 UwC0QVurx8VG0000 None True Igg3 Oogonium IgG3 research. None None notebook None None None None None 2024-10-30 10:01:58.257964+00:00 1
5 I2s9yjbSruef0000 None True Igg2 Teeth Hensen's cells IgG3 research Granul... None None notebook None None None None None 2024-10-30 10:01:58.258059+00:00 1
14 jPwddx0itEIL0000 None True Cold-Sensitive Sensory Neurons Zona reticulari... None None notebook None None None None None 2024-10-30 10:01:58.258911+00:00 1
20 YO0QIlfNjaYl0000 None True Igd rank Medullary IgG3 research. None None notebook None None None None None 2024-10-30 10:01:58.259478+00:00 1
33 qRUnsBpuvyLV0000 None True Medullary IgG2 Teeth research IgE Spermatid IgG. None None notebook None None None None None 2024-10-30 10:01:58.260703+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
93 toduFRFqZ79O0000 None True Research IgG3 study IgY Enterochromaffin-like ... None None notebook None None None None None 2024-10-30 10:01:58.270930+00:00 1
129 06bhaduaEMwo0000 None True Research Bulbourethral glands research. None None notebook None None None None None 2024-10-30 10:01:58.274195+00:00 1
155 whhQMKghFhOy0000 None True Research cluster cluster IgG2 IgG2 classify IgE. None None notebook None None None None None 2024-10-30 10:01:58.280098+00:00 1
274 Lw3vPgBhLpU20000 None True Research IgG3 candidate Granulosa lutein cells... None None notebook None None None None None 2024-10-30 10:01:58.298047+00:00 1
327 Pyz9h1WCuUTT0000 None True Research rank IgY Oogonium study IgD rank. None None notebook None None None None None 2024-10-30 10:01:58.302637+00:00 1
361 MKLeCIaWJLTj0000 None True Research IgG3 Spinal nerves Ganglia Hensen's c... None None notebook None None None None None 2024-10-30 10:01:58.309259+00:00 1
412 a8gq4mFfFmbz0000 None True Research Enterochromaffin-like cell Ganglia Te... None None notebook None None None None None 2024-10-30 10:01:58.317795+00:00 1
464 QgfEn19KIwDM0000 None True Research Spermatid Spermatid intestine IgE clu... None None notebook None None None None None 2024-10-30 10:01:58.327129+00:00 1
485 z3Ydu961YaGo0000 None True Research Medullary Teeth IgG IgE IgG3 investig... None None notebook None None None None None 2024-10-30 10:01:58.329030+00:00 1
487 ZxnZmbp6iXCT0000 None True Research IgE IgD result rank IgM. None None notebook None None None None None 2024-10-30 10:01:58.329210+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 MrOBNyibzN18PNNO0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-30 10:01:49.032066+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7hYW6kDOSKKrvI0d0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-10-30 10:01:49.110691+00:00 1
3 uni0rFQp6M81p5uv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-30 10:01:49.119087+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries